fbpx

대일시스템

대일시스템

DVIA MC1000 BRUKER NMR Ascend 400

Active Vibration Isolation Systems

Installation Reports

1. Measurement Details

  • Measurement Date
    January 25, 2018
  • Measurement Devices
    1. LAN-XI Data Acquisition Hardware
    – Brüel & Kjæ r 3050-B-040
    2. Data Analysis Software
    – Brüel & Kjæ r PULSE LAB SHOP 14
    3. Sensors
    – PCB Accelerometer
    – Model: 393B05
  • Measurement Location
    B1

2. Equipment Information

  • Manufacturer
    BRUKER
  • Model
    NMR Ascend 400

3. Vibration Isolation System
Model: DVIA-MC1000

DVIA MC 3000 OMICRON STM

4. Installation Photos

DVIA MC1000 BRUKER NMR Ascend 400

5. Results
Z-axis (Vertical)

DVIA MC1000 BRUKER NMR Ascend 400 z-axis-vertical

X-axis (Left to Right)

DVIA MC1000 BRUKER NMR Ascend 400 x-axis-left-to-right

Y-axis (Front to Back)

DVIA MC1000 BRUKER NMR Ascend 400 y-axis-front-to-back

6. Reference
Generic Vibration Criteria

Criterion Curve Description Amplitude1) μm/s (in/s) Detail Size2) μm
Workshop (ISO) Distinctly perceptible vibration, Appropriate to workshops and non-sensitive areas. 800 (32,000) N/A
Office (ISO) Perceptible vibration. Appropriate to offices and non-sensitive areas. 400 (16,000) N/A
Residential Area (ISO) Barely perceptible vibration. Appropriate to sleep areas in most instances. Usually adequate for computer equipment, hospital recovery rooms, semiconductor probe test equipment, and microscopes less than 40x. 200 (8,000) 75
Operating Theatre (ISO) Vibration not perceptible. Suitable in most instances for surgical suites, microscopes to 100x and for other equipment of low sensitivity. 100 (4,000) 25
VC-A Adequate in most instances for optical microscopes to 400x, microbalances, optical balances, proximity and projection aligners, etc. 50 (2,000) 8
VC-B Appropriate for inspection and lithography equipment (including steppers) to 3pm line widths. 25 (1,000) 3
VC-C Appropriate standard for optical microscopes to 1000x, lithography and inspection equipment (including moderately sensitive electron microscopes) to 1μm detail size, TFT-LCD stepper/scanner processes. 12.5 (500) 1-3
VC-D Suitable in most instances for demanding equipment, including many electron microscopes (SEMs and TEMs) and E-Beam systems. 6.25 (250) 0.1-0.3
VC-E A challenging criterion to achieve. Assumed to be adequate for the most demanding of sensitive systems including long path, laser-based, small target systems, E-Beam lithography systems working at nanometer scales, and other systems requiring extraordinary dynamic stability. 3.12 (125) <0.1
VC-F Appropriate for extremely quite research spaces; generally difficult to achieve in most instances, especially cleanrooms. Not recommended for use as a design criterion, only for evaluation. 1.56(62.5) N/A
VC-G Appropriate for extremely quite research spaces; generally difficult to achieve in most instances, especially cleanrooms. Not recommended for use as a design criterion, only for evaluation. 0.78(31.3) N/A
  1. As measured in one-third octave bands of frequency over the frequency 8 to 80 Hz (VC-A and VC-B) or 1 to 80 Hz (VC-C through VC-G).
  2. The detail size refers to line width in the case of microelectronics fabrication, the particle (cell) size in the case of medical and pharmaceutical research, etc, It is not relevant to imaging associated with probe technologies, AFMs, and nanotechnology.

    The information given in this table is for guidance only. In most instances, it is recommended that the advice of someone knowledgeable about applications and vibration requirements of the equipment and processes be sought.